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ne multispectral thermal infrared (TIR) data to document spatial relationships of
surface sediments over time in a modern depositional environment associated with dust emissions, Soda
Lake playa, Mojave Desert, United States. The approach employed here involved time-series TIR data acquired
from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and a linear spectral
mixture analysis. An automated algorithmwas applied to derive emissivity image endmembers. Evaluation of
the chosen endmembers revealed that they can be categorized into five major spectra classes based on
diagnostic absorption features. Each spectrum has been identified in relation to mineral abundance and soil
arrangement that are common in playa settings: A, “clayey silt-rich crust”; B, “intermediate-salt crust”;
C, “quartz-rich deposit”; D, “salt-rich rough crust”; E, “sulfate-rich crust”. Spectral classes A–B–C–D yielded
the lowest RMS errors (0–0.025) over time in the iterative deconvolution algorithm between the measured
and modeled spectra. The produced fractional abundance images show high areal concentrations for clayey
silt-rich crust, salt-rich rough crust, and quartz-rich deposit, as the first surficial mapping of Soda Lake.
Significant changes in the spatial relationships of the major surface sediments in Soda Lake were observed
after a flooding event (2005) and a relatively dry period (2006). The approach utilized in this study can be
advantageous for continuous monitoring of environments characterized by a small area and a complex
surface, which may enable a better understanding of their responses to climate changes and potential for
dust emissions.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Desert dust has many impacts on climate, ecosystems, and humans
(Goudie & Middleton, 2006). The most productive areas for dust
appear to be modern and ancient sediment-depositional environ-
ments located mainly in arid regions (e.g., Gillette, 1999; Prospero
et al., 2002; Washington et al., 2006). One type of dust source is playa
(dry lake). An episodic influx of surface water introduces clastic
materials to the ephemeral lake, while evaporation of near-surface
brines leads to accumulation of chemical constituents on and within
the near-surface (Eugster & Hardie, 1978; Rosen 1994). The sedimen-
tation processes in playas result in dynamic surfaces that are
sometimes vulnerable to wind erosion (Reheis, 2006; Reynolds
et al., 2007). Continued advances in understanding dust sources and
modeling dust emissions depend on spatially-detailed quantification
of their surface sediments over time.

Remote sensing data in the visible-near infrared (VNIR) and
shortwave infrared (SWIR) wavelength regions have been used with
various techniques to study sediments in playa environments located
in Africa (Bryant, 1996; Millington et al., 1989), Asia (Rezaei & Saghafi,
dri.edu (I. Katra).
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2006), North America (Crowley, 1993), and South America (Kampf &
Tyler, 2006). The use of these parts of the electromagnetic spectrum,
however, may be limited due to the inability to accurately distinguish
spectral signatures of many silicate-rich minerals common in playa
settings (Blount et al., 1990; Ramsey et al., 1999). Moreover, Crowley
(1993) noted that several important evaporites involved in playas,
including thenardite and anhydrite, exhibit generally featureless
spectra in the SWIR region. Silicate, evaporite and other common
minerals in playa settings do exhibit diagnostic spectral features in the
TIR spectral range that simplify their remote discrimination. Crowley
and Hook (1996) have utilized airborne multispectral TIR (8–12 μm)
data acquired from Thermal InfraredMultispectral Scanner (TIMS) at a
single flight to successfully map a variety of surface crusts containing
abundant evaporite and silicate minerals in Death Valley salt pan,
California, employing supervised classification based vector-angle
comparison between known spectra and image spectra. Airborne
data, however, are not cost-effective for multitemporal observations.
Data with similar TIR spectral capabilities are globally available from
the satellite instrument Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), which is aboard the Terra platform as
part of NASA's Earth Observing System (EOS). Since ASTER was
launched (December 1999), its multispectral TIR data have been used
to identify surface minerals mainly within the context of lithology and
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natural resources (e.g., Rowan &Mars, 2003; Vaughan et al., 2005). No
attempt has been made to use spaceborne multispectral TIR data to
study sediments in dynamic landforms as playas.

The objective of this study is to utilize ASTER TIR data to identify
the surface sediments in a modern playa, Soda Lake (CA), associated
with dust emissions, and to illustrate their spatial distribution over
time. To this end, a time-series of ASTER TIR data was first evaluated
and then spectrally analyzed. The nature of the TIR energy emitted
from surface materials and the spatial mixture at a scale below that of
a pixel motivated of use a spectral deconvolution to retrieve sub-pixel
information related to areal abundances of surface materials. The
methods and the obtained results of the data processing are described
in Sections 5 and 6. The fractional abundance images are discussed in
Section 7.

2. Theoretical framework

2.1. TIR spectral features

Various clastic and chemical minerals encountered within playas
exhibit wavelength-dependent molecular absorption features in the 8–
12 μm region. A mineral spectrum is usually characterized by spectral
emissivity minima caused by fundamental vibrational modes in the
crystal lattice of the mineral. Silicate-rich minerals such as quartz and
montmorillonite show a broad asymmetric band which has emissivity
Fig. 1. Emissivity spectra of a number of minerals plotted in laboratory (dashed lines)
and the five ASTER channels resolutions. Laboratory spectra from ASU thermal emission
spectral library (Christensen et al., 2000). Spectra are offset on the vertical axis for
clarity at 0.10 segments.
minima between approximately 9 and 10 μm (Fig. 1) due to the Si–O
stretching modes (e.g., Hunt, 1980). In the molecular unit of sulfate
(gypsum, anhydrite), the spectral features at 8–9 μm arise from
oscillations of the S–O bond structure (e.g., Clark, 1999). A uniform
electrostatic charge across the crystal of chlorides such as thenardite
produces a relatively broad absorption band around the 8–9 μm
wavelengths. For carbonate minerals, spectral features result primarily
from fundamental vibrations of the C–O bonds in the carbonate anions
(CO3

2−), but dolomite, in which the mineral structure alternates layers of
calcium and magnesium, may show spectral absorption in shorter
wavelengths (11 μm) than that of the calcite (e.g., Lane & Christensen,
1997). Such distinctive spectral features permit the minerals to be
identified inmultispectral TIR data. Nonetheless, some spectral features
may be undersampled and become obscured in the convolution to a
sensor channels. For example, the calcite (CaCO3) emissivity spectrum is
severely degraded in the ASTER filtered spectrum (Fig. 1) as its band is
much narrower than the ASTER band and it is likely to be very shallow
because of the fine grain size (see below). In addition, the lack of an
ASTER channel in the 10 μm region (ozone absorption band) affects the
discrimination of some minerals, especially mafic rock-forming miner-
als such as feldspars/microcline (Fig.1). Previous studies have addressed
the issue of energy scattering and the effect of particle size on TIR
spectra (e.g., Clark, 1999; Hunt, 1980; Salisbury & Wald, 1992). As the
grain size decreases, the spectral feature depth also decreases (i.e.,
higher emissivity) due to differences in porosity and optical thickness,
and their effect on volume scattering (see kaolinite in Fig. 1). Significant
changes in the position of the spectral features may occur for non-solid
and/or fine-grained (b40 μm) particles (e.g., Salisbury & Wald, 1992).
Minerologically, a large portion of independent surface grains in playa
settings are below that size. In practice, however, evaporation of solute-
rich groundwater commonly results on durable crusts in the playa
surface that consist of evaporite minerals or mixture of evaporite and
silt–clay sediments (Eugster & Hardie, 1978; Rosen, 1994), which
increase the effective radiating diameter.

2.2. TIR deconvolution

The spectrum of a single pixel in a satellite image space is typically
amixture of more than one surfacematerial. It has been demonstrated
that the thermal infrared spectrum of a mixed surface may be closely
modeled using a linear combination of a few spectrally unique
components (endmembers) weighted by the areal concentration of
each endmember (Gillespie, 1992; Ramsey & Christensen, 1998;
Ramsey et al., 1999). The fundamental principle of spectral mixture
analysis is that the endmembers combine in the composite spectrum
in proportion to their areal fractions, allowing a determination of the
best fit endmember percentages for a givenmixture spectrum (Adams
& Gillespie, 2006; Gillespie, 1992; Ramsey & Christensen, 1998):

e kð Þi¼
Xn
i¼1

fie kð Þiþr kð Þi ð1Þ

where ε is the radiance value of endmember i for a specific channel
(λ), fi is the fraction of the endmember, n is the number of end-
members, and r is the residual error. The modeled fractions of the
endmembers are constrained by:

Xn
i¼1

fi ¼ 1:0 ð2Þ

Residuals for all channels (m) can be combined into a root-mean
squared (RMS) error, to assess the model fit:
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Fig. 2. Location map of the study site and ASTER TIR image (channel 10, May 2004) of the greater Soda Lake area. The black dashed region denotes the playa contour (after Brown,
1989), representing the area analyzed in detail. Balch, North, and Crucero aremeteorological stations (CLIM-MET) of U.S. Geological Survey (http://esp.cr.usgs.gov/info/sw/clim-met).
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Different solutions may be used to solve a linear mixture model in
which a constrained least-squares solution is the most frequently one
due to its simplicity. Nonetheless, themixingequation ismathematically
sensitive when the endmember vectors are too similar as the fraction
values fluctuate sensitively in response to small changes in channel DNs
(Adams & Gillespie, 2006). The number and identity of endmembers
dependupon thenature of the scene, but also the spectral resolution, the
number of bands, and the spatial scale (Gillespie, 1992). The use of TIR
emissivity-separated datamay simplify themodel as only one unknown
parameter (emissivity) per component in a pixel is determined, while
in TIR radiance data, there are two unknowns (temperature and
emissivity).

3. Soda (dry) Lake playa

3.1. Evolution, geology and hydrology

Soda Lake is located in the northeast edge of the Mojave River,
Mojave Desert, California (Fig. 2). The Mojave River crosses several
tectonic basins bounded by northwest–southeast oriented right-
lateral strike-slip faults (e.g., Brown, 1989). During the Pleistocene
the River filled these basins with fluvial, deltaic, playa, and lacustrine
Fig. 3. Photographs of Soda Lake playa in (A) flooding on February 20, 2005, following heav
mineral dust event on February 6, 2001. The photographs taken by Robert Fulton, California
deposits to form the late Pleistocene lakes Harper Lake, Lake Manix,
and Lake Mojave (Enzel et al., 2003). A transition to a drier climatic
regime resulted in the total drying of Lake Mojave by ca. 8.7 ka, with
playa conditions dominating Soda Lake and Silver lake basins
following this event (Wells et al., 2003). At present time, Soda Lake
occupies a topographic low (+280 m a.s.l.) with an area of
approximately 95 km2. The playa is surrounded by large bedrock
outcrops (Soda Mountains, Little Cowhole and Cowhole Mountains)
and associated alluvial fan complexes. These outcrops are composed
of early Precambrian metamorphic, late Precambrian and Paleozoic
sedimentary rocks (sandstone, shale, conglomerates, and carbonates),
coarse-grained Mesozoic granites, granodiorites and diorites and
Cenozoic volcanic rocks. South of Soda Lake there are extensive
aeolian sand sheets and fluvial sediments derived from the broad fan
complex related to the terminus of the Mojave River (Brown, 1989;
Enzel et al., 2003). Brown (1989) showed that the upper 0.5 m-layer in
the center of the playa, north, and southeast, contains mainly silt and
clay, while this layer in the north and the southwestern is sandy. The
Soda Lake area experiences hyperarid climatic conditions with less
than 100mm ofmean annual precipitation and estimated evaporation
of 200–250 mm/year. Measurements conducted by the U.S. Geological
Survey from 1956 to 1985 (http://waterdata.usgs.gov/nwis) showed
y precipitation event in January 2005 (see data in Fig. 5), and (B) blowing of evaporite–
Desert Consortium, Baker, CA.

http://waterdata.usgs.gov/nwis
http://esp.cr.usgs.gov/info/sw/clim-met


Fig. 4. Surface types observed in various locations in Soda Lake on April 13, 2007. (A) Dry, porous crust-surface withmicrorelief of numerous centimeters, composedmainly of massive
halite and thenardite along with quartz, feldspar, and mica. (B) Transaction between crusted soils, dry, porous surface (left) and dry, hard surface. (C) Clayey silt crust composed
mainly of muscovite, phlogopite, biotite, illite, and quartz. (D) Quartz-rich deposit.
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that the groundwater levels beneath the playa are likely to vary in
space and time. Along the western margin, the groundwater table is at
or near the surface of the playa, deepening toward the east and north
to about 5 m and lower (N20 m) beneath the alluvial fans on the
eastern side of the basin. The major brine type is Na–CO3–Cl–SO4

(Eugster & Hardie, 1978), indicating precipitation of Na-rich minerals
in the playa.

3.2. Surface characteristics

Soda Lake has a relatively flat surface, where most of it is
vegetation-free, or has a distinct vegetation association. Extreme
southerly displacement of the Jet Stream over the eastern North
Pacific usually causes the Mojave River to flood the playa surface (e.g.,
Brown, 1989) (Fig. 3A), but the subsequent desiccation result
development of efflorescent salts that are vulnerable to wind erosion
(Fig. 3B). Most of the dust is emitted from the greater Soda Lake area
(playa and alluvial fans) during the late winter and spring. Reheis and
Kihl (1995) and Reheis (2006) reported on variations in fluxes of silt–
clay, soluble-salt, and carbonate related to climatic factors, in
particular, seasonally and yearly precipitation. Large areas in the
Fig. 5. Summaryof the ASTER TIR scenes on the background of average daily precipitation (mm)
Night-time scenes are noted by asterisks.
western margin are covered in salts, while in the eastern part of the
playa surface tends to be hard packed and lack efflorescent salt
(Reynolds et al., 2007). Kerr and Langer (1965) have studied samples
from representative Mojave playas. The sample taken from Soda Lake
was a soft, porous, puffy crust-type composed of common rock-
derivedminerals (quartz, microcline, muscovite, biotite) and chemical
minerals (halite, thenardite, anhydrite). Some current surface types in
Soda Lake and the associated minerals from X-ray diffraction analysis
are presented in Fig. 4. The Soda Lake surface, however, has never been
mapped.

4. ASTER TIR data set

ASTER records spectral radiance in five TIR channels, producing
day or night time scenes (~60×60 km) with a spatial resolution of
90 m/pixel and a NEΔTb0.3 K (Yamaguchi et al., 1998). The five
channels (#10–14) are centered on 8.29, 8.63, 9.08, 10.66, and
11.32 μm, respectively. For this study, we acquired Level-2 (L2)
surface-leaving radiance (AST_09T) and the emissivity (AST_05)
products from the Land Processes Distributed Active Archive Center
(LP DAAC) at the U.S. Geological Survey Center for Earth Resources
received in the CLIM-METstations around Soda Lake (see Fig. 2) in eachyear (2003–2006).



Fig. 7. DCS of ASTER TIR radiance of the greater Soda Lake area (see Fig. 2). TIR DCS
channels 14, 12, and 10 (wavelengths 11.32, 9.08, and 8.29 μm) are displayed as RGB,
respectively. Typically, magenta–red is evidence of silica-richmaterials, and the yellow–

green–blue tones may indicate chemical products as carbonate and sulfate. Note that
the playa surface changes with time, while the features surrounding have the same
color compositions in both images. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Observation and Science (EROS) (http://LPDAAC.usgs.gov). AST_09T
product, created from the Level-1B, has been radiometrically,
geometrically, and atmospherically corrected. The L1B is produced
by applying the radiometric calibration and geometric correction
coefficients to the Level-1A data, resulting in an absolute accuracy of
2% and a relative accuracy of 1% (Yamaguchi et al., 1998). The AST_05
product is derived from the AST_09T data using the Temperature
Emissivity Separation algorithm developed by Gillespie et al. (1998),
which accounts for both the spectral contrast and downwelling
atmospheric irradiance. As L1B data are processed on demand, the
subsequent L2 products have the same atmospheric correction. Scenes
were selected from the ASTER data available using the USGS Global
Visualization Viewer website (http://glovis.usgs.gov). An attempt was
made to choose scenes recorded at different time intervals, based on
overall quality, low cloud cover (N3%) and clear sky above the Soda
Lake. Seven scenes, four days (~18:30 UTC) and three night time
(~05:50 UTC) data were selected from the ASTER TIR database,
spanning from November 2003 to July 2006 (Fig. 5). The dates
correspond to time spans between which precipitation occurred
during these years in that area, in which the upper most layer of the
playa was relatively dry.

5. TIR data evaluation

The first step of the data analysis process (Fig. 6) was evaluation of
the TIR data and the compositional emissivity spectra of Soda Lake
surface using a decorrelation stretching (DCS) technique. The DCS,
explained in detail by Gillespie et al. (1986), is a transformation of the
original data that removes the high correlation commonly found in TIR
multispectral data sets and allows the thermal and emissivity
variations to be distinguished visually. The combination of the
channels 14 (R), 12 (G) and 10 (B) have been found to be particularly
effective by users of ASTER TIR data (e.g., Rowan & Mars, 2003). A first
DCS was performed on the AST_09T image set of the greater Soda Lake
area. Summarized results in Fig. 7 show variations in the playa surface
that stand out on a relatively steady background. A second DCS was
Fig. 6. Flow chart illustrating the data analysis process.
performed for the emissivity data set, considering only the playa
surface (Fig. 8). The results of this transformation show clear
variations in color and composition over time, indicating spatial and
temporal variations in surface materials throughout the playa. No
attempt was done in this step to identify and quantify the surface
sediments. However, the similar color composition observed for
consecutive night- and day-time images (May-4 and May-5 2004 and
July-13 and July-14 2006) was well expected due to the very short
time of several hours between such paired images and the lack of
precipitation events (Fig. 5). The DCS transformation results (Figs. 7
and 8) support the basic assumption regarding surface-sediment
variations in space and time at Soda Lake, suggesting that the TIR data
set may be useful for further spectral analysis.

6. Spectral mixture analysis

6.1. Image endmembers

Endmember spectra are extreme pixels in the scene that they mix
together to explain most of the spectral variance in the image space.
The selection of endmembers therefore is a key to generate physically-
meaningful fraction images that can be interpreted as surface-
material abundance maps. Image endmembers extracted from pixel
spectra do not need to be calibrated to the image and can be obtained
from the image space. The time-series emissivity data set of the
unstudied surface of Soda Lake was a trigger in this study to apply an
automated algorithm for endmembers selection. Spectral endmem-
bers were derived by the Sequential Maximum Angle Convex Cone
(SMACC) (Gruninger et al., 2004). In this algorithm, extreme points are
used to determine a convex cone, which defines the first endmember.
A constrained oblique projection is then applied to the existing cone to
derive the next endmember. The algorithm was run for each
emissivity image of the Soda Lake surface only, until it found
endmember already accounted for in the group of the predecessor
endmembers. Up to five endmembers (#1–5) with different spectral
characteristics were selected by the SMACC for each five-channel
multispectral emissivity image. Evaluation of these endmembers
revealed that they can be categorized into five different classes (A–E)

http://LPDAAC.usgs.gov
http://glovis.usgs.gov


Fig. 8. DCS of ASTER emissivity images of the Soda Lake surface (see Fig. 2). Emissivity DCS channels 14, 12, and 10 (wavelengths 11.32, 9.08, and 8.29 μm) are displayed as RGB,
respectively. Night-time images are noted by asterisks. Note the similarity in the color patterns between consecutive night and day images. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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based on their emissivity spectra (Fig. 9). Most of the curves show
emissivity lows, approximately in 8.63 (class E), 9.08 (classes A and C),
and 10.66 μm (class B), but there is also a relatively smooth curve
(class D). This classification may be supported in a certain manner by
the locations of the endmembers in the image space, which calculated
by the SMACC model. The endmembers of classes A, B, C, and D were
located in compositionally distinct areas that are associated with
abundance of blue, green, magenta, and yellow, respectively, in the
DCS images (Fig. 8), while endmembers of class E were located at
Fig. 9. Spectral image endmembers derived by SMACC for each emissivity image. The spectr
removal curve. The endmember in each plot are shown with respect to the model reproduc
starting from November 2003.
blue–magenta pixels. The endmembers in each class were averaged to
create an endmember set (Fig. 10) for the spectral unmixing.

6.2. Endmember set

The spectral classes in Fig. 10 are assumed to represent major
surface materials in Soda Lake. The image spectra can be interpreted
simultaneously through a comparisonwith known spectra and a prior
knowledge of the remotely sensed area. However, it is realistic to
a are offset for clarity, and normalized to compare absorption features using continuum
e order (#1–5). Each endmember was classified (A to E) based on its spectral features,



Fig. 10. Spectral library of surface materials in Soda Lake (classes A–E) along with some
representative spectra of minerals at ASTER and laboratory (ASU thermal emission
spectral library) resolutions.

Table 1
Spectral classes (A–E) distribution (%) in the five-channel emissivity images of Soda
Lake derived from Spectral Angle Mapper classification (threshold angle of 0.05 rad)

Nov. 04
2003

May 04⁎

2004
May 05
2004

Jul.07⁎

2004
Nov. 05
2005

Jul.13⁎

2006
Jul.14
2006

A 65.0 47.4 55.4 40.4 60.8 27.2 22.9
B 16.8 4.9 6.1 3.5 0.7 0.0 0.0
C 7.2 11.8 11.2 15.6 6.5 19.0 34.6
D 10.8 35.9 27.3 40.4 31.8 53.3 41.9
E 0.2 0.1 0.0 0.1 0.2 0.5 0.6

Night-time images are noted by asterisks.
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define image spectra in terms of surface-sediment type (major
mineral and soil arrangement) rather than specific minerals due to
the mineralogic mixture at any spatial scale in remote sensing data.
The emissivity spectrum of class A has low-contrast with a weak
spectral feature near the 9.08 μm, similar to the curve of some
phyllosilicate minerals laboratory spectra, for example, illite/musco-
vite (compound alteration), phlogopite, and biotite, which mainly
contain Si, K, Al and Mg, and associated with weathering of granites,
metamorphic limestones and dolomites rocks, typical of western and
eastern Soda Lake (e.g., Brown, 1989). Illite, however, could be derived
also from alteration of K-feldspars or recrystallization of smectites.
Abundance of silt may form a crusty surface that usually varies in salt
content, color, and micro-topography (see Fig. 4B, C) due to variations
in sediment deposition. The emissivity curve of class B has an unusual
shape with a minimum at 10.66 μm that does not fit a spectrum of a
pure mineral. A similar spectrum, however, was shown by Crowley
and Hook (1996) for massive halite (NaCl) with some mirabilite
(Na2SO4·10H2O) of smooth crusts on floodplains in the Death Valley.
The crystallization of these minerals associated with evaporation of
very saline (Na–SO4–Cl brine types) and/or shallow groundwater. It
can be linked to intermediate level of efflorescent salt crust
development that occurs in desiccation events (Eugster & Hardie,
1978; Reynolds et al., 2007). Spectrum C exhibits a relatively strong
absorption feature at 9.08 μm, indicating that quartz is an important
constituent. Even though the convolution of quartz lab spectra to
ASTER shows the characteristic doublet feature (Fig. 1), this is not
always seen in practice with ASTER emissivity spectra (Rowan et al.,
2005). The quartz could be mixed with other silicate minerals such as
montmorillonite ([Na,Ca]0.3[Al,Mg]2Si4O10[OH]2·nH2O), which is a
reaction product of weathering volcanic rocks in a dry environment.
The sand sheets located south to the playa and the alluvial fans located
at the western and eastern margins (Figs. 2 and 7) are source areas for
such sediment type (Fig. 4D) deposited in the playa by aeolian activity
and surface water flows. In class D, a downward slope toward the
shorter wavelengths of the emissivity spectra points to sulfate, for
example, trona (NaHCO3·Na2CO3·2H2O) and thenardite (Na2SO4).
Similar emissivity spectra with Na-rich salts were demonstrated by
Crowley and Hook (1996) in a crust sample which consists of
thenardite, halite, dolomite, quartz, and muscovite. It can be linked
to dehydration of surface with efflorescent salt that forms a dry,
porous and salt-rich (rough) crust (Kerr & Langer,1965; Reynolds et al.,
2007) as shown in Fig. 4A. Spectrum E corresponds to spectra of Ca-
sulfate salt minerals, in particular, pure gypsum (CaSO4·2H2O) and
anhydrite (CaSO4) minerals. The gypsum is crystallized initially in
areas with near-surface brines of Na–(Ca)–Cl composition. The
anhydrite may not be formed by direct precipitation from the brine
but through interaction of interstitial brine with sediments (Eugster &
Hardie, 1978). These sulfates, however, occur usually as a minor
constituent in a siltymixture surface. In this light, the spectra classes A
to E were defined as “clayey silt-rich crust” (hard or soft),
“intermediate-salt crust”, “quartz-rich deposit”, “salt-rich rough
crust”, and “sulfate-rich crust”, respectively.

6.3. Preliminary classification

A Spectral Angle Mapper (SAM) classificationwas derived to assess
the spectral classes (A–E, Fig. 10) distribution before the spectral
unmixing. SAM compares the angle between a reference spectrum
vector and each pixel vector in n-dimensional space, where smaller
angles represent closer matches to the reference spectrum and pixels
further away than the specified maximum angle threshold in radians
are not classified (Kruse et al., 1993). From Table 1, it appears that the
spectral classes A (clayey silt-rich crust) and D (salt-rich rough crust)
have a high cover percentage over time, in which the value of
spectrum A or D is always the highest among the classes. Class B
(intermediate-salt crust) shows a higher value (16.8%) compared to
class D (10.8%) in November 2003, but demonstrates a trend of
decreasing cover percentage towards November 2005, including
values of zero in July 2006. Class C (quartz-rich deposit) appears in
all the dates with maximum of cover percentage in July 2004 and July
2006. Class E characterized by low values of less than 1% inmost cases.
The SAM results reveal that the endmembers A, C, and D play an
important role in the image space, whereas endmember E (sulfate-
rich crust) is not significant in terms of cover percentage over time.
These distinctions were taken into consideration in the following step.

6.4. Modeling image spectra

The linear retrieval (spectral deconvolution) algorithm utilized in
this study was demonstrated by Ramsey and Christensen (1998). It has
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been used successfully in earth and planetary sciences for modeling
fractional areal extent of endmembers and identifying individual
surface materials within a single pixel (Bandfield, 2002; Michalski
et al., 2004; Ramsey et al., 1999; and others). The algorithm employs a
numerical chi-squares minimization technique with two main
constraints. First, if one or more of the final values is negative
(assuming no physical meaning), it is presumed that the endmember
corresponding to that value is not present in the mixed spectrum and
is therefore removed. In image format, this can be indicated as an area
of potentially unmodeled endmember. A second constraint placed on
the algorithm is that the element of the column vector must sum to
unity. The unity condition produces fractional percentages which sum
to 100% rather than a renormalization of the fractions as a final step. In
this algorithm, the linear deconvolution of n-band data is limited to n
possible endmembers, i.e. up to five endmembers in modeling ASTER
TIR scenes. A library of four surface-material endmembers and one
blackbody endmember (emissivity=1.0) was used to deconvolve the
emissivity images. The incorporation of a blackbody component into
the deconvolution routine allows for differences among the spectral
contrast of the library endmembers (Michalski et al., 2004). The
algorithm was run more than once, with different emissivity spectra
combinations A–E (Fig. 10), to fit minimum values of RMS errors. The
spectral combination of A–B–C–D yielded the best model fit in
the spectral unmixing. These spectral classes were associated with the
Fig. 11. Fractional abundance images for spectra endmembers A to D retrieved from ASTER e
November 2005, July 2006 (lower row). RMS errors: 0–0.025, 0–0.012, and 0–0.014, respect
associated with white pixels. Classes A to D represent “clayey silt-rich crust”, “intermediate
highest values in most cases in the SAM results (Table 1), and with
the color abundances in the DCS images (Fig. 8). The output of the
algorithm consists of image layers for each of these endmembers with
pixel values equal to the fractional abundance (in percentages) of that
endmember, and RMS error image of the difference (0–1) between the
measured andmodeled spectrum. Fig.11 shows fraction image sets for
three representative dates: November 2003, November 2005, and July
2006. RMS errors ranged from zero to a maximum of 2.5% in
emissivity for the entire set, having no correlation with any of the
spectral classes. To illustrate the spatial relationships of the surface
sediments in the entire set, the fraction images of each date were
displayed in RGB format (Fig. 12). In these images, abundances of red,
green, and blue, are associated with high percentage fraction of the
spectral classes C, A, and D, respectively. Pixels with color composi-
tion, for example, blue–green tones, indicate that more than one
spectrum is dominating them, but their proportion in each image
space is relatively small.

7. Fraction images review

Figs. 11 and 12 represent the first mapping of Soda Lake playa. The
clastic–evaporite mixture that characterizes most of the surface types
may be seen in each fraction image (Fig. 11). However, it is possible to
distinguish high areal concentrations among clayey silt-rich crust
missivity spectral deconvolution for representative dates: November 2003 (upper row),
ively. Endmembers areal concentrations are from 20% to 100%, where higher values are
-salt crust”, “silicate-rich deposit”, and “salt-rich rough crust”, respectively (see text).



Fig. 12. Illustration of spatial relationships among selected surface sediments in Soda Lake over time. Abundance of red, green, and blue, are associated with higher values within the
range 20–100% of “quartz-rich deposit”, “clayey silt-rich crust”, and “salt-rich rough crust”, respectively (see text). Black pixels within the playa contour are closely linked to
“intermediate-salt crust” (class B in Fig. 11). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3220 I. Katra, N. Lancaster / Remote Sensing of Environment 112 (2008) 3212–3221
(green), salt-rich rough crust (blue), and quartz-rich deposit (red),
which stand out clearly in Fig. 12, suggesting that overall the selected
spectral endmembers used tomodel the image spectra fit themodel of
Soda Lake surface over time very well. The surface-sediment types
observed at Soda Lake playa appear to be common for wet playas in
the southwestern United States (e.g., Neal, 1968; Reynolds et al., 2007).
The main concentration areas of clayey-silt, salt, and quartz deposits
in the playa may be supported in a certain manner by the qualitative
description of Reynolds et al. (2007) and by the sedimentologic
measurements of Brown (1989) (see Section 3).

Relatively minor changes are seen in the first four images that span
eight months (November 2003 to July 2004), in contrast to significant
changes in November 2005 and July 2006. The similarity in color
abundances for consecutive night- and day-time images (May 2004 and
July 2006), however, was anticipated. At the observed spatial and
temporal scales, the minor changes until July 2004 can be related to the
series of rain events that occurred at that time (Fig. 5), and as a
consequence stabilizing in the hydrologic and the geomorphic pro-
cesses. The most distinguishing and effective factor affecting modern
depositional environment is flooding. Such events were documented in
Soda Lake after a heavy rainfall (see data in Fig. 5) during late August
2003 and again in January–February 2005 (Fig. 3A). The significant
rearrangement of the soil surface observed in November 2005, although
it does not represent the playa surface immediately after the inundation
and desiccation, can be related to the flooding of 2005. Massive
quantities offine-grained sedimentswere apparently transported by the
Mojave River and deposited throughout the playa. This may explain the
higher concentration of clayey silt-richmaterials at the northern part of
the playa in 2005 and 2006 compared to 2004. The inundation and the
subsequent drying produced widespread surfaces rich in efflorescent
salts thatwere probablyerodedbywind in theperiod thereafter (Reheis,
2006;Reynolds et al., 2007). Theexpansionof the salt-rich roughcrust in
2006 can be related to the relatively dry period (Fig. 5), but also to
changes in the groundwater levels beneath the playa. There is often
dynamic equilibrium in playas between geomorphic processes and
groundwater levels for thoseareas inwhich thegroundwater involved in
their sediment formation. Relations between groundwater levels and
surface types havebeendemonstratedbyReynolds et al. (2007) for awet
playa, Franklyn Lake, Mojave Desert, CA. It is reasonable to link the
sediment distribution in November 2003 to the recorded gradient of
increasing depth to groundwater in southwest–northeast direction (see
Section 3), so that the green pixels in the west side are associated with
near-surface water and the black and blue pixels with the capillary-
fringe zone. A spectral distinction between different clayey silt-rich
surfaces unfortunately was not made in this study, thus the west and
northeast sides of Soda Lake appear as green pixels in the RGB images.
However, alteration in green and red pixels at the northeast side may
indicate deep groundwater levels and therefore low salt contents in the
soil surface at this side of the playa compared to the clayey-silt surface at
the west side. If the surface types in wet playas do reflect the
groundwater, the expansion of the salt-rich rough crust (blue pixels)
toward west in 2006 images may point on decreasing in the ground-
water level and/or changes in the brine type between 2004 and 2006.
Nonetheless, alteration in surface sediments affect the surface vulner-
ability to wind erosion, inwhich, for example, the resistance of salt-rich
rough crust is higher than that of loose efflorescent salts cover (e.g.,
Reynolds et al., 2007). In this context, it is reasonable to assume that in
July 2006 the playa surface was less sensitive to wind erosion.

8. Conclusions

The approach employed here, involving time-series of multispectral
ASTER TIR data and spectral mixture analysis, has shown that, despite
the complexity of a wet playa surface, major surface sediments can be
identified and their spatial relationships over time can be modeled.
More specifically, the multispectral Level-2 (L2) emissivity (AST_05)
ASTER product can be used successfully to study surface sediments due
to its ability to distinguish the emissivity spectral features of common
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clastic and chemical minerals. Secondly, the variation of ASTER filtered
spectra in discrimination of surface minerals emphasizes the use of
image endmembers as reference spectra in spectral mixture analysis.
Thirdly, the ASTER spectral mixtures of fine-grained surface with
abundant chemical precipitation such as halite and thenardite may be
closely linked to the development level (surface dehydration stage) of
the efflorescent salts in order to be identified. Fourthly, the use of a
spectral library constructed from representative multitemporal spectra
of modern depositional environments allows minimization of RMS
errors and comparison among the modeled spectra; however, an
uncertainty regarding the differentiation between clayey silt-rich crusts
(green pixels, Fig. 12) remains in this study. Finally, using fractional
abundance images appears to be a useful method for spatially-detailed
assessment of the surface sediments in dynamic landforms such as wet
playas. The approach utilized in this study is appropriate to monitor
surface sediments in other depositional environments, although they
may vary greatly in their physical settings. Once the major spectra that
represent the land surfaces over time have been constructed, it is
possible to detect current changes by variations in spectral features of
the image endmembers extracted from the new data set and/or directly
by the spectral mixture analysis.

It revealed from the fractional abundance images that the surface
sediments in Soda Lake and their spatial relationships can be changed
significantly after heavy rainfall (image 2005), but also during a
relatively dry period (image 2006), suggesting that the mosaic-like
pattern of the surface sediments in such environments may reflect the
potential for wind erosion and dust emission at a certain time.
Continuous monitoring of these environments synthesized with
climatologic and soil data may provide insights into their responses
to hydrologic and geomorphic process and therefore dust emissions.
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